321 research outputs found

    Note and calculations concerning elastic dilatancy in 2D glass-glass liquid foams

    Get PDF
    When deformed, liquid foams tend to raise their liquid contents like immersed granular materials, a phenomenon called dilatancy. We have aready described a geometrical interpretation of elastic dilatancy in 3D foams and in very dry foams squeezed between two solid plates (2D GG foams). Here, we complement this work in the regime of less dry 2D GG foams. In particular, we highlight the relatively strong dilatancy effects expected in the regime where we have predicted rapid Plateau border variations.Comment: 12 pages, 3 tables, 5 figure

    Non-linear oscillatory rheological properties of a generic continuum foam model: comparison with experiments and shear-banding predictions

    Get PDF
    The occurence of shear bands in a complex fluid is generally understood as resulting from a structural evolution of the material under shear, which leads (from a theoretical perspective) to a non-monotonic stationnary flow curve related to the coexistence of different states of the material under shear. In this paper we present a scenario for shear-banding in a particular class of complex fluids, namely foams and concentrated emulsions, which differs from other scenarii in two important ways. First, the appearance of shear bands is shown to be possible both without any intrinsic physical evolution of the material (e.g. via a parameter coupled to the flow such as concentration or entanglements) and without any finite critical shear rate below which the flow does not remain stationary and homogeneous. Secondly, the appearance of shear bands depends on the initial conditions, i.e., the preparation of the material. In other words, it is history dependent. This behaviour relies on the tensorial character of the underlying model (2D or 3D) and is triggered by an initially inhomogeneous strain distribution in the material. The shear rate displays a discontinuity at the band boundary, whose amplitude is history dependent and thus depends on the sample preparation.Comment: 18 pages - 17 figure

    Des forêts et des hommes

    Get PDF

    Velocity profiles in shear-banding wormlike micelles

    Full text link
    Using Dynamic Light Scattering in heterodyne mode, we measure velocity profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to exhibit both shear-banding and stress plateau behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the velocity profiles in all the regions of the flow curve and emphasize on the complex, non-Newtonian nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
    • …
    corecore